Earth Algebra

It is the time of year when newly arrived students gather around the university in uneasy groups, shuffling like swallows waiting to migrate. All have passed, quite recently, through the trial of school exams. Meeting them, I remember all too well the shock of exam papers whose questions bore little relation to anything I had learned. The key thing my teachers told me was not to panic: read the rubric on the paper, check you know how many questions to answer, and finish each question off as best you can.

I had a particular dislike of maths tests at school: complex questions constructed around unlikely scenarios such as a baths with running taps and the plug out, or a weightless block sliding down an inclined plane with strange frictional qualities. Who could arrange such a thing, and why would they do it? That was not, as successive maths teachers explained, a relevant way to think. It was the units, the numbers and the equations that mattered.

The New Scientist Feedback column has had a lot of fun over the years with the odd units people use – lengths expressed in double decker buses, or weights in whales (clearly a highly variable unit), or areas as multiples of Wales. Their correspondents rejoice in the bizarre, but the underlying message is always the clarity that sensible SI units and a bit of careful thought would bring.

Environmentalists love to cite statistics of all kinds, and they too like striking metrics. They too have fallen in love with a new mega-unit: Earths. Ever since the moon shots of the 1960s, the idea of Only One Earth has been at the heart of environmentalist argument about the shape of human economy and society (a ‘one world environmental ontology’ as Chris Sandbrook calls it).   But the current fashion for the earth as unit is a little more specific. Two framings have become particularly dominant.

The first is the idea of ‘Half Earth’. Nature, we are told, needs 0.5 Earths. The 20% of land in protected areas that comprises the CBD 2020 target is too little: conservationists are urged to place 50% of the earth in protected areas. As Chris Sandbrook has pointed out, and as the wider literature has discussed, this wonderfully disguises a lot of tricky politics (since people already own and live on most of the land conservationists want, so ‘saving’ those areas is likely to be expensive and unpopular as well as being unfair and unjust).

The second is the idea of measuring human consumption in Earths. Humans, we are told, are using 1.7 Earths a year: the Global Footprint Network calculates that ‘Earth Overshoot Day’ was 1 August in 2018. The idea of Global Footprint provides a metric of the ecological resources and services consumed by the economy through pollution, overfishing, unsustainable agriculture, overharvesting of forests, and emission of carbon dioxide.

The metrics behind Half Earth or Earth Overshoot Day are complicated, and you probably have to be a bit of a science geek to dig in to the algebra.   But in a sense the detail does not matter greatly. Neither is really intended to be scientific. They are both metaphors, framing devices in environmentalist arguments about future actions.

The problem is the mathematics pushes in two very different directions – the two ‘Earth’ metaphors reflect very different ideas about the future direction of human society and economy.

Half Earth proposes a separation of nature and human society, half an Earth of dense human settlement and efficient production, and half of biodiverse ecosystems and little human presence (an essentially ecomodernist vision). The Global Footprint proposes a reduction of the energy and material basis of production and consumption with a redistribution towards poor countries (a kind of degrowth vision).

The tricky thing is that both these equations need to be solved at the same time. It is no good trying to pretend that one is more important than the other. Conservationists running the numbers and supporting the idea of Half Earth are doing the arithmetic right. But so are other environmentalists calculating the Global Footprint.

There is only one Earth to play with. Nature needs space, but it also needs a significant reduction in human consumption. Space where non-human lives can flourish needs to be doubled. But net consumption (in all its forms) also needs to be halved.

The calculations we need to navigate forwards are much more complicated than either crude ‘Earth Unit’ headline might suggest. Earth mathematics is going to be complicated: tessellating economic production and countryside, trading off reductions in energy and material use and the restoration of ecosystems, the integration of human society with non-human nature at every scale from the biotechnology vat to the productive ocean, the garden to the biosphere.

The Twenty First century offers a tricky exam paper for humanity, and we need to get the answers right if we are to make it through with any space for human and non-human flourishing.

The alert student would be well advised to tackle more than one question.

 

Advertisements

A tale of HE, SHE, WE, and me

A big debate is going on at the moment about the future of conservation – much of it centred on the suggestion by Edward Wilson and others that half the world should be allocated to protected areas. Wilson calls this “Half Earth” (HE), and his book of the same name calls for 50% coverage of ‘inviolable natural reserves’. Others have set out various counter-proposals, including “Whole Earth” (WE) and “Sustainable Half Earth” (SHE). I have played a small part in this debate over the last few months, which has given me the chance to observe at close quarters the strange process by which simple and catchy ideas can take hold, even when most people don’t agree with them. In this article I try to tell this curious tale of HE, SHE, WE and me.

Continue reading

The three most dangerous narratives in conservation

Emery Roe, an American policy scholar, first developed the idea that ‘narratives’ – stories about the world and how it works – are used in policy making processes to cut through complexity and justify a particular course of action. We are a storytelling species, and people find it easy to understand and get behind a compelling story with strong internal logic and a beginning, middle and end. Once a narrative has taken hold they can be very difficult to shake off, at least until an even more compelling ‘counter-narrative’ arrives on the scene. A classic example from resource governance is the ‘resources will be over-exploited unless they are in private ownership’ narrative, based on Garrett Hardin’s 1968 Tragedy of the Common’s article. It took decades of careful scholarship, and ultimately a nobel prize for Elinor Ostrom, to demonstrate that this narrative was compelling, influential, and wrong.

There are numerous narratives circulating within the conservation sector. Some are inspiring, some are innovative, some are misleading. However, there are some that are, in my view, potentially dangerous. These narratives sound convincing – that’s why they have become established – and they are significantly shaping conservation research and practice in the world today. They are not entirely false, but their ‘truth’ has become accepted as orthodoxy to the extent that they slip by almost unnoticed, without proper scrutiny. This leads whole areas of conservation activity down particular paths that I fear will not lead to a desirable destination.

Continue reading

The Cyborg Conservationist

Haze from the 2015 forest fires in Southeast Asia may have killed about 100,000 people. It was also really bad for wildlife. Benjamin Lee and colleagues recently showed these effects by measuring acoustic activity on an ‘eco-overpass’ between two areas of forest in Singapore before, during and after the haze event. The data showed that acoustic activity dropped by 37% during the haze, and had showed only partial recovery 16 weeks later.

I learned of this research through the excellent BBC World Service Inside Science Programme on 12 October 2017. What caught my attention was the serendipitous nature of the study. Lee was supposed to be surveying bats to assess the effects of the overpass. But the haze triggered his asthma, and he had to stop work: but his acoustic recorders stayed in place. And hence a dataset was collected that spanned the haze event, recording not just bats but also birds and insects, and showing how they were silenced by the conditions.

This neat paper highlights the extraordinary power of remote devices to record biological data. Digital acoustic recording is widely used to survey bats (e.g. the iBats programme) and increasingly birds and insects. Moreover, archived sound recordings made for one purpose can be mined later for another. Citizen science recordings of bats in the UK have been used to identity stridulating bush-crickets. Continue reading

Conservation and the final frontier

A few weeks ago I settled down to watch a BBC TV programme called The 21st Century Race for Space, hosted by celebrity physicist and one-time pop star Brian Cox. I had spent all day thinking about conservation at work, and was looking for a bit of escapism. In the programme Cox spent a lot of time ogling large shiny spacecraft in even larger hangars in the Nevada desert, putting on space suits and visiting simulated mars colonies. It was like a Top Gear special all about space rockets.

One of the striking things about the programme was the people that Cox was able to talk to. He had 1:1 interviews with Dennis Tito (the first space tourist), Jeff Bezos (founder of Amazon and owner of Blue Origin, a ‘spaceflight services company’), and Richard Branson (founder of Virgin and owner of Virgin Galactic). He tried to get Elon Musk (founder of PayPal and owner of SpaceX) but had to settle for some guy who had once met him at a party.

These billionaires are revolutionising space innovation by moving it from being the exclusive preserve of state organisations (such as NASA) to the hands of private enterprise. They have extraordinary ambition – not just to advance our civilisation into space, but to make money while doing so. Bezos in particular spoke with fanatical zeal about the opportunity to provide a whole new canvas for human innovation and economic growth off our planet. Scholars of capitalism would recognise this as the ultimate spatial fix – capital seeking new frontiers for expansion in space (outer and virtual) once the possibilities on Earth are exhausted.

I found all this very interesting, but what really got my attention was when the subject unexpectedly turned to conservation. Several of the interviewees described their plans as part of a conservation strategy – both for biodiversity on Earth in general and human survival in particular (their arguments are very usefully summarised in this article from which I sourced some of the quotes below). This idea of ‘conservation through space travel’ builds on some thinking put forward by Stephen Hawking recently when he said “the human species will have to populate a new planet within 100 years if it is to survive. With climate change, overdue asteroid strikes, epidemics and population growth, our own planet is increasingly precarious”. Continue reading

PristinePark2.0™: the future of offsetting?

A group of smartly dressed executives stands on a viewing platform, looking out over a verdant forest teeming with wildlife. A waiter glides among the party topping up glasses of champagne, while another offers elaborate canapés. A man steps forward and claps his hands.

“Ladies and gentlemen, as Chief Executive of Conservation plc, may I welcome you to this exclusive viewing of the wonderful place that we call PristinePark2.0™. You have been carefully chosen to have the first opportunity to visit this paradise, and to purchase a stake in it. But first, let me tell you our story. Continue reading

The Conservation of Smellscapes

Recently, I cycled back late from town. There was no wind, almost no traffic, and no moon. I was struck by the power of smells in the dark: first some splashed diesel near the garage, then lilac in a garden, pine trees at the motorway bridge, and the warm ammonia of bullocks at the farm. Finally, home, and then, suddenly, the smell of my neighbour’s washing, hung out overnight: an overpowering and entirely artificial scent, a radical shift of smellscape.

I first came across the concept of ‘smellscape’ in a paper by the cultural geographer Douglas Porteus in 1985. He pointed out that smells tend to be place-related, and that the nose perceives smellscapes just as the eye sees landscapes. Porteus describes sampling smells on ‘smellwalks’, not unlike my cycle journey home. Different continents, countries, regions, neighbourhoods and houses have their particular smellscapes. As Victoria Henshaw pointed out in her book Urban Smellscapes, cities have characteristic smells.   Kate McLean, an artist and designer, makes ‘smellmaps’ of cities around the world. Continue reading